A neuro-fuzzy approach for estimating mean residual life in condition-based maintenance systems
نویسندگان
چکیده
This paper presents a framework for online reliability estimation of physical systems utilising degradation signals. Most prognostics methods promoted in the literature for estimation of mean-residual-life of individual components utilise trending or forecasting models in combination with mechanistic or empirical failure definition models. In the absence of sound knowledge for the mechanics of degradation and/or adequate failure data, it is not possible to establish practical failure definition models. However, if there exist domain experts with strong experiential knowledge, one can establish fuzzy inference models for failure definition. This paper presents a neuro-fuzzy approach for performing prognostics under such circumstances. The proposed approach is evaluated on a cutting tool monitoring problem. In particular, the method is used to monitor high-speed-steel drill-bits used for drilling holes in stainless steel metal plates.
منابع مشابه
Design and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کاملAvailability analysis of mechanical systems with condition-based maintenance using semi-Markov and evaluation of optimal condition monitoring interval
Maintenance helps to extend equipment life by improving its condition and avoiding catastrophic failures. Appropriate model or mechanism is, thus, needed to quantify system availability vis-a-vis a given maintenance strategy, which will assist in decision-making for optimal utilization of maintenance resources. This paper deals with semi-Markov process (SMP) modeling for steady state availabili...
متن کاملModel-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کاملA multi-stage stochastic programming for condition-based maintenance with proportional hazards model
Condition-Based Maintenance (CBM) optimization using Proportional Hazards Model (PHM) is a kind of maintenance optimization problem in which inspections of a system relevant to its failure rate depending on the age and value of covariates are performed in time intervals. The general approach for constructing a CBM based on PHM for a system is to minimize a long run average cost per unit of time...
متن کاملEstimating the Optimal Dosage of Sodium Valproate in Idiopathic Generalized Epilepsy with Adaptive Neuro-Fuzzy Inference System
Introduction: Epilepsy is a clinical syndrome in which seizures have a tendency to recur. Sodium valproate is the most effective drug in the treatment of all types of generalized seizures. Finding the optimal dosage (the lowest effective dose) of sodium valproate is a real challenge to all neurologists. In this study, a new approach based on Adaptive Neuro-Fuzzy Inference System (ANFIS) was pre...
متن کامل